Unit Topic: Energy

Essential Question: How does energy relate to forces?

Concept 1:

Nature of Energy

Objectives:

Discern if an object has kinetic or potential energy, based on a description.

Vocabulary:

Energy
Kinetic energy
Potential energy
Gravitational potential energy

Practice:

- 1. Explain the differences between the 3 types of potential energy.
- 2. What is the energy of a 4 kg apple that is sitting on a 2 m high tree branch?
- 3. What is the energy of a baby who weighs 20 N sitting in a high chair 1.5 m high?
- 4. What is the kinetic energy of a bike with a mass of 16 kg traveling at 4 m/s?
- 5. How high is a 0.5 kg squirrel sitting if it has 36 J of energy?

Concept 2:

Conservation of Energy

Objectives:

Given a picture or a description, explain the energy conversion occurring in an object.

Vocabulary:

Law of Conservation of Energy Electromagnetic energy Mechanical energy

Practice:

- Give an example of where you would find each of the following types of energy: radiant, thermal, electrical, sound, nuclear, and electromagnetic.
- 7. What is the relationship between kinetic and potential energy of a falling object?
- 8. Determine the energy conversion for the following:
 - a. Light bulb
 - b. Firework
 - c. Flute
 - d. Leaf
- 9. Draw a picture of a pendulum or someone hitting a golf ball, showing how GPE, KE, and ME change throughout the object's motion. Make your labels very clear.

Concept 3:

Thermal Energy

Objectives:

Identify materials as conductors or insulators.

Given a picture or a scenario, explain how thermal energy is being transferred.

Vocabulary:

Thermal energy Temperature Heat Insulator Conductor Specific heat

Practice:

- 10. Explain the relationship between temperature and kinetic energy.
- 11. Explain why there is no such thing as "cold".
- 12. Describe how thermal energy flows when a person is sitting in a chair at their desk.
- 13. Explain the difference between the 3 types of thermal energy transfer. Include an example of each.
- 14. List examples of materials that would classify as conductors vs. insulators.
- 15. How much heat is needed to warm 0.072 kg of gold from 20°C to 90°C if the specific heat of gold is 136 J/kg/°C?

Concept 4:

Work and Power

Objectives:

Use Newton's 2nd Law to complete work and power calculations.

Vocabulary:

Work Power

Practice:

- 16. A force of 85 N is used to push a box along the floor a distance of 15 m. How much work was done?
- 17. 150 J of work was done to lift a crate with a force of 20 N. How far was the crate lifted?
- 18. How much power is used if a force of 90 N is used to push a box a distance of 30 m in 10 s?
- 19. A go-cart and rider have a mass of 100 kg. If the cart accelerates at 5 m/s² during a 25 m sprint, how much work did the cart do?
- 20. A 10 kg rock falls from a height of 18 m and lands on a guy about 3 s later. How much power did it hit him with?